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Transition in the fermion determinant of a polymer model? 

S B Volchan and C AragHo de Carvalho 
Departamento de Fisica, Pontificia Universidade Cat6lica do Rio de Janeiro, C P  38071, 
22453 Rio de Janeiro RJ. Brazil 

Received 9 January 1989 

Abstract. We calculate the one-dimensional fermion determinant associated with a polymer 
model with a soliton. The model exhibits a curious transition, which corresponds to the 
disappearance of a normalised zero mode as one of its parameters varies. The calculation 
is done on the whole real axis, so as to preserve the topology of the background, by using 
the scattering data of a steplike potential. 

1. Introduction 

Determinants appear naturally in quantum field theory when formulated in the path 
integral approach. In a semiclassical approximation, the first quantum correction leads 
to the calculation of determinants of differential operators (fluctuation determinants). 
As a rule, they are divergent and it is necessary to introduce a regularisation procedure. 
The infinities appear because one has an infinite number of ever-increasing eigenvalues 
(ultraviolet divergences) which may even be continuous. Typically, one discretises 
those eigenvalues by putting the system in a large box and then applies standard 
methods (i.e. zeta function regularisation) to deal with the infinite product (Camperi 
and Gamboa Saravi 1984). However, in the case of fermions in the presence of a 
topological background, this procedure does not preserve the asymptotic properties 
responsible for topological effects, unless the compactification is performed with 
extreme care (i.e. stereographic projections are usually involved). We have thus chosen 
to calculate determinants on the whole real axis and this led us to a scattering problem. 

In fact, determinants can be used as a tool to analyse scattering processes and yield 
spectral properties and phase shifts (Baker 1958). They are naturally related to 
scattering data via Jost functions (de Vega 1981). As many QFT models display 
interesting properties related to the appearance of fermionic zero modes (Niemi and 
Semenoff 1986) in the presence of non-trivial topological backgrounds, we were led 
to investigate the behaviour of one such determinant in a model in 1 + 1 dimensions. 

Recently, these models have attracted the attention and research efforts of field 
theoreticians due to their possible applications in condensed matter physics. In 
particular, the physics of quasi-one-dimensional polymers offers not only conceptual 
but also rich phenomenological possibilities for the realisation of ideas common to 
high-energy models. 

These applications are based on a continuum limit approach to Hamiltonians 
defined on a lattice, whose prototype is the Su-Schieffer-Heeger model (Yu-Lu 1987). 
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It describes the interaction of lattice vibrations with T electrons through hopping 
terms. Linearisation of the dispersion relation of T electrons around the Fermi level 
(Jackiw and Semenoff 1983) yields a continuum limit electron-phonon Hamiltonian 
identical to a relativistic Dirac model with interacting fermion and boson fields. It 
has the general form: 

where D =  - d / d x + 4 ( x ) ,  and 4 ( x )  is related to the dimerisation parameter. 
This Hamiltonian exhibits interesting properties when 4 ( x )  is considered as an 

external field with non-trivial topology (i.e. a soliton or structural defect): fermion 
number fractionisation, supersymmetry and appearance of localised states. Fermion 
number fractionisation is connected with topology through the existence of normalis- 
able zero modes of H. The spectral properties of H can be investigated ‘globally’ by 
means of an associated one-dimensional Schrodinger determinant which contains its 
scattering data. As the fermion determinant can also be calculated through the scatter- 
ing data of the Dirac operator (Dashen et a1 1975) we reduce its computation to the 
Schrodinger problem. 

In this paper we discuss the behaviour of a determinant of that type, which appears 
in the continuum limit of a generalised polymer model, as a function of a variable 
mass parameter p (measuring the hopping asymmetry). Recent work indicates the 
occurrence of a curious transition of the fermion number in this process, corresponding 
to the disappearance of zero modes. 

2. One-dimensional determinants 

In one dimension, it is well established (Fuentes 1987) that one can calculate deter- 
minants of Schrodinger operators through eigenfunctions obeying suitable boundary 
conditions in the interval [-L,  L] .  The idea is to consider operators like 6 = 
-$+ V(x),  V ( x )  bounded below, and analyse the eigenvalue problem: 

( - a i +  U(X)-T)f(X)=O 

imposing periodic boundary :onditions, f (  - L )  = f (  L )  = 0. This amounts to putting 
the system in a box so that D has a discrete infinite spectrum, bounded below. If 
T = T~ coincides with one of these eigenvalues, then the shifted operator d - T~ has a 
zero mode and therefore its determinant vanishes. Alternatively, if we consider the 
function gu,,(x) defined as the unique solution of the initial-value problem: 

( -a:+ U(x)-7)g(x)=O 

g ( - L ) = O  g’( - L )  = 1 

we see that T will be an eigenvalue of d if and only if gu,,( L )  = 0. When this happens, 
gU,Jx) is, in fact, the associated eigenfunction. 

Using this, one can show that 

det(-al+ V(x) - 7 )  -~ g , , ( L )  
det(-a:+ W(x)-7)-gW,,(L) 

as a consequence of the identity between two functions of complex variable T which 
have the same zeros and poles (Coleman 1985, Felgason 1981). The reason for taking 
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a quotient of determinants is to ensure convergence (in general W(x)  is taken as a 
constant free potential). 

These results are valid for an interval [-L, L ] .  However, in physics we are interested 
in operators defined on the whole real axis. The simplest one can try is, therefore, to 
consider a sufficiently large box and, after the calculation, proceed to the limit L+ +w, 
hoping to obtain a convergent and sensible result. With this in mind we consider the 
equation: 

- I,!/”+ V(x)I,!/ = k2$ 

with V(x) bounded below and such that limx+*ca V(x) = 0. Then, we take the linear 
combination: 

$ ( X I  = AI,!/,(x) + B$2(x) 
where cLl(x) and (CI2(x) are independent solutions of the corresponding scattering 
problem. Their asymptotic behaviour is given by 

I,!/,(x, k ) -exp( ikx)+R(k)  exp(-ikx) X + - W  

$,(x, k )  - T ( k )  exp(ikx) 

t,h2(x, k) - T (  k)  exp( -ikx) 
I,!/2(x, k )  -exp(ikx)+ R‘(k) exp(ikx) 

X + + W  

x+-W 

X + + W .  

The justification for taking these scattering solutions is to avoid divergences in the 
L + +CC limit which would appear had we taken combinations of bound states. Then 
we follow the recipe of the method above. Imposing the conditions 

I,!/&( -L/2) = 0 axI,!/-w(-L/2) = 1 

we determine A and B. Then we can find $+,(L/2) and, therefore, in the box 

det( -d: + V(X) - k’ 
-a2 - k’ 

- - ( T - $  [exp(-2ikL) + RR’+ ( R  + R’) exp(-ikl)]  1 - exp( -2ikL) 

To proceed to the L+ +CC limit, we make an ‘analytic continuation’ to the upper 
half-plane: k = ix, ,y > 0. Returning to real k we obtain 

.-a:+ V(x) - k2 1 
det( -3: - k2 ) 

We then see that the determinant dejned on the whole axis is directly associated 
with the scattering data, namely the transmission coefficient. (We observe that the 
hypothesis limx+ia: V ( x )  = 0 is essential to ensure a convergent result.) 

We can interpret the result by referring to the well known dispersion relation for 
the scattering data of the problem 

- I,!/”(x) + V(X)$ = k21,!/ 
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Under such conditions, one can show (Fadeev 1967) that T(k) (the S, , (k)  S-matrix 
element) is a meromorphic function on the upper half-plane for k # 0 ,  whose poles 
are given by k, = iXn, n = 1, . . . , N B ,  xn > 0 associated with the bound states of the 
potential. Then 

for Im k > 0, k # 0 and T (  k) = T (  k + iE), Im k = 0. Thus, we can clearly distin- 
guish the contribution of the discrete and continuum parts of the spectra. In particular, 
we see that the determinant vanishes whenever k passes through a normalisable bound 
state of -d; + V(x) or, equivalently, a zero mode of -a: + V(x) - k2. 

An often cited example is the Poschl-Teller potential: 

A > l  V(x)=----~~~A(A-l)sech~ax h2  
2m 

which is an exactly solvable potential (Flugge 1971). We obtain 

-d;-a2A(A-1)sech2 cux-k’ 
-dS, - k2 

r( - ik /o ) r (  1 - ik/cu) ) =r(A -ik/a)T(l-A - i k / a ) ’  
der( 

This potential appears in the Jackiw-Rebbi model, a 44 model with Yukawa 
coupling, describing the interaction of a real scalarAfield 4[x) and spinor tj(x). When 
the fermions are in a soliton background 4 ( x )  = 4 tanh($x), the Dirac Hamiltonian 
posesses a normalisable zero mode in the middle of the gap. This means that one of 
the Schrodinger equations obtained has a zero mode. In fact, the equation is 

(-d:-2$’ sech2($x)+$2)tj(x) = 6 4  = E2tj 

and fi has a zero mode. Therefor: its determinlant must vanish. Comparing with the 
formula above we get A = 2 ,  CY = 4 and k2 = -d2. Then 

-8; - 2$2 sech2($x) + $* 
det( -8; + 6’ 

as expected. 

3. A curious transition 

The phenomenon of fermion number fractionisation is connected with the spectral 
properties of Dirac operators, in particular the appearance of zero modes. In field 
theory models for polymers in the presence of soliton-like (kink) structural defects, 
the fermion number is related to properties such as conductivity, magnetic susceptibility 
and optical absorption of the T electrons of the polymer. 

In recent work (Araglo de Carvalho and Pureza 1988) the occurrence of a curious 
transition in a generalised polymer model was observed whose hopping amplitude for 
the electron-phonon interaction is of the form: 
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Here, y ,  is the position of the nth atom of the chain and we define the parameter 
p = ( t ,  - t 2 ) / 2 .  The continuum limit yields a relativistic quantum field model whose 
Dirac Hamiltonian is 

where fi = d/dx + 4 ( x )  + p, so that p corresponds to a mass term for the fermions. 
Let us choose as our background field a topological kink, 4(x) = do tanh(4,x). 

A model with asymmetrical hopping amplitudes is more suitable to mirror the cis 
polymer variety because of the position of the hydrogen atoms in the chain. Such a 
variety does not possess a degenerate ground state (as trans polymers do). Therefore, 
it is not expected to support a kink-like defect. However, recent work (Arag5o de 
Carvalho 1988) indicates the possibility that even a cis polymer might admit a kink 
defect. Besides, samples of cis polymers are always contaminated with trans, where 
a soliton might occur. Thus, the above choice might not be merely academic if one 
could alter the value of p without destroying the defect itself (e.g. chemically). 

To analyse the spectral properties one considers the iterated Hamiltonian: 

so that we have to solve the one-dimensional Schrodinger problems: 

[fi+(/-4fi(,)It= E t  [ m f i + ( P ) l x  = Ex. 
These involve Morse-Rosen (Morse and Feshbach 1953) potentials: 

A d2 
L = -T+ CO+ C, tanh( qh0x) + 

dx 

where 

co=4;+p2 

c, = 2P40 
c2=0 

c3 = -24;. 

It can be shown that the problem: 

[-d2/dx2+( 4 i + p ’ ) + 2 p ~ $ ~ t a n h (  4ox)-2&sech2( &,x)]t= k 2 t  
where V(x) = ( qb;+ p2)  + 2 ~ 4 ~  tanh( 4ox)  - 24; sech2( c,box), admits a normalisable zero 
mode for O <  p < q50. It can also be shown that, as we vary the parameter r =  p/cp0, 
there occurs a transition in which this zero mode, present when p < 40, is swallowed 
up by the continuum and eventually disappears as the gap reopens for p > do. 

The disappearance of the zero mode when p > c $ ~  results in an abrupt transition 
of the fermion number (the system admits charge conjugation invariance) 

N = *@(p - 40) 

where O(x) is the Heaviside function. 
It would be interesting to investigate the behaviour of the determinant in this 

process, as the disappearance of a zero mode would correspond to an abrupt change 
in its value, from zero to a finite amount. 
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We then want to calculate the determinant of a one-dimensional step-like Schrodin- 
ger potential. If we tried to apply the given method we would have to choose 

$(x)  = &,(XI + B$*(x) 

ILl(x, k)  - exp(ik‘x) + R- exp(-ik’x) 

(x, k) - T- exp( i k”x) 

G2(x, k)  - exp(ik”x) + R+ exp(-ik”x) 

&(x, k)  - T+ exp(ik’x) 

where now 

X+--00 

X + S W  

X-++CC 

X-+-W 

and k ’ = [ k 2 - (  40+p)2 ]”2 ;  k ” = [ k Z - (  40-p)2]1’2, 
Imposing our conditions, we would have 

T- exp[(k‘+ k”)L/2] 

1 
T+ 

- - { exp[ - (k’ + k”) L/2] + exp[ i( k’ - k”) L/2]R-  

+exp[-i(k‘+ k”)L/2]R++exp[i(k’+ k”)L/2]R+R-} 

For the free case, we choose $?&(L/2) = sin(EL)/f ( E =  (k2 -  4;)’’’). But then the 
identification: 

-8; + V(X) - k2 $+,( L/2) 
-a;+&-k* ) =$YA(L/2) 

det( 

does not converge in the L+ +W limit (after the analytic continuation k = ix, x > 0). 
But if we observe that 

det( -a’,+ V(X) - k2 
-a; + 4; - k2 

- det(-8:+ V(x)- k2) det(-d’,-W*) - 
det( -8; - W’) det( -8: + 4: - k2) 

where K2 = ((kt+k”)/2)’ and $yA(L/2) = sin(WL)/W, we would obtain 

x { exp( -iK L )  + exp[ i( k’ - k”) L/2] R- + exp[ -i( k’ - k”) L/2] R,  

+exp(iWL)R+R-} 

This expression converges in the L+ +W limit: 

$+m(L/2) L++= k‘+ k“ 1 --- 3YA( L/2) ( 2k’ T+(k) 

after analytic continuation. 
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Now, it can be shown that (Cohen and Kappeler 1985) 

k ’ T+ = k” T- 

where T- is the transmission coefficient for a plane wave incident from -cc to +a, 
and is given by (Khare and Sukhatme 1988) 

T( 1 - i k’/24, - i ki’/2+,)r(2 - i k’/240 - i k”/24,) 
T(-ik’/ 40)T( 1 - k”/ 40) T-( k)  = 

Note that for p =0,  k’=  k“ and we recover the Poschl-Teller case: V ( x )  = 

We want to analyse the k = 0 case (zero mode) while r = p / 4  varies. In this case 
4: - 24: sech2( + o x ) .  

W2( k = 0) = -4i, so that the quotient of free determinants is 

We then have the following. 
(i) ,U < #o;  k = O + k ’ =  i ( 4 0 + p ) ;  k ” =  i( 4 0 - ~ ) :  

+ +cc - r (o ) r (3 )  - 
+ P / 4 0 ) U 2  - -P/40)  

so that the determinant vanishes, as expected, for the zero mode is present. 
(ii) ,U = 40: 

kT(-1 - i( k2 - 4 ~ $ ; ) ’ / ~ / 2 4 ~ -  ik/24,)T(2 - i(k2-44i)’/2/2+0- ik/24,) 
T(-i( k2 -44:)”2/40)r(  1 - ik /40 )  

k”T-( k)  = 

(we used zI‘(z)=T(z+l)* as z+O, zr(z)+I‘( l ) ) .  Then 

det( - a 2 +  x 2  V ( x )  ) = a .  1 
- a x  - 4 0  

(iii) ,U > &: 

-a:+ V ( x )  
-8, - P 
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We note that, as r + 1, we have 

and not a as we have obtained in case (i i) .  
We then see that the determinant jumps from zero to a finite value p > &, in 

agreement with the intuitive idea suggested by the disappearance of the zero mode. 
Curiously, the value at p = do is the average of the values for p < & and p > do, 

4. Conclusion 

One-dimensional Schrodinger determinants can be calculated for a class of step-like 
potentials on the whole real axis. According to general results, they are directly related 
to scattering data. We saw, in an example borrowed from polymers physics, that, 
although not a topological invariant, the determinant is sensitive to the disappearance 
of zero modes. In this way, it has a complementary behaviour to fermion number. 
A similar analysis could probably be made for problems in higher dimensions with 
spherical symmetry, for instance in two dimensions in the presence of vortices. In 
these cases, however, the analysis is probably more subtle due to the existence of 
resonant states. 

We could thus treat the problem directly in a non-compact space and take account 
of the topological properties involved. We stress that, since fermionic determinants 
may sometimes be written in terms of scattering data, our method might lead to other 
interesting applications in problems where topological backgrounds are present. 

References 

Aragio de Carvalho C 1988 On the dimerization of linear polymers Preprint ICTP IC/88/191 
Aragio de Carvalho C and Pureza J M 1988 Mass induced transition in fermion number Preprint PUC/RJ 

Baker M 1958 Ann. Phys., NY 4 271 
Camperi M F and Gamboa Saravi R E 1984 Zeta function regularization of finite temperature field theories 

Cohen A and Kappeler T 1985 Indiana Uniu. Math. J.  B 4 127 
Coleman S 1985 Aspects of Symmetry (Cambridge: Cambridge University Press) 
Dashen R F, Hasslacher B and Neveu A 1975 Phys. Rev. D 12 2443 
de Vega H J 1981 Commun. Ma!h. Phys. 81 313 
Fadeev L D 1967 A m .  Math. Soc. Transl. Ser. 2 65 126 
Felgason S 1981 Geometry, Particles and Fields (Odense: Odense University Press) 
Flugge S 1971 Practical Quantum Mechanics I (Berlin: Springer) 
Fuentes M A 1987 Thesis Facultad de Ciencias Exatas y Naturales, Universidad Nacional de Buenos Aires 
Jackiw R and Semenoff G 1983 Phys. Rev. Lett. 50 439 
Khare A and Sukhatme U 1988 J.  Phys. A: Math. Gen. 21 L501 
Morse P M and Fesbach H 1953 Methods of Theoretical Physics ZZ (New York: McGraw-Hill) 
Niemi A J and Semenoff G 1986 Phys. Rep. 135 100 
Yu-Lu 1987 Solitons and Polarons in Conducting Polymers (Singapore: World Scientific) 

26/88 

Preprint Universidade Nacional de Plata 


